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Abstract— The delamination problem ol laminated composite plates is considered. The Frémond's
adhesion approach is developed and adapted to the delamination problem considered. A consistent
thermodynamical formulation for the damage model is presented and the governing equations are
carried out. The relation between the proposed approach and the fracture mechanics theory is
emphasized. Furthermore. a regularized model is developed. A numerical procedure based on the
finite element method and on the elastic predictor-damage corrector method is proposed. Numerical
results carried out for beams are compared with the analytical solutions. Finally, the problem of
drilling a composite laminate is investigated.

I INTRODUCTION

Laminated composites are made by several thin laminae bonded together to act as an
integral structural element. Imperfection of adhesion between laminae may be introduced
in the laminate during the fabrication process or manufacturing operations. Delamination,
that is growth in size and number of interlaminar defects, can occur when the laminate is
subjected to accidental loading applied under quasi-static or dynamic (impact) mode. The
delamination leads to a loss of stiffness and strength of the laminate. The effects of
delamination can be ruinous, since the evolution of the interlaminar defects can carry the
structure to total failure followed by collapse.

The literature regarding the delamination and related problems is large. A presentation
of several structural problems of delamination. with up-dated extensive references, can be
found in Garg (1988) and Ochoa and Reddy (1992). Delamination may be caused by
interlaminar stress concentration occurring in the neighborhood of the free edge or around
loaded holes of the composite laminated plates (Jain and Yang, 1991). Furthermore,
interlaminar defects may grow when the laminate is subjected to compressive loads. In this
case a thin laminated layer buckles, causing intense stresses at the delamination boundary,
and a global structure failure at loads below the design level occurs (Bottega and Maewal.
1983 ; Chai and Babcock. 1985 ; Kachanov. 1988 : Bruno and Grimaldi, 1990).

In order to determine the load carrying capacity and service effectiveness of the
structure, an accurate analysis able to predict the initiation and evolution of damage is
needed. The study of the delamination of composite plates may be carried out by adopting
a fracture mechanics approach or by introducing appropriate interface constitutive laws
between the laminae constituting the whole laminate. From a physical point of view, it
seems reasonable to suppose that this second approach can be related to the fracture
mechanics approach. In fact, when separation between two bonded solids occurs, there is
an evolution of the unglued areua that is equivalent to the propagation of a fracture in an «
priori known direction.
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Fig. 1. Geometry of two superimposed plates.

Two- or three-dimensional analyses have been proposed to define the stress distribution
around the delaminated area in laminated composite plates. While the two-dimensional
approach in some cases appears unable to lead to a satisfactory stress analysis, the three-
dimensional approach is always complex and needs strong computational efforts.

The main purpose of this paper is to present a new and comprehensive delamination
model which allows to recover either the classical fracture mechanics theory or, via reg-
ularization of the involved functionals. a wide variety of the interface constitutive models.
A further purpose of the paper is to develop a simple and effective numerical procedure for
the analysis of the delamination phenomenon.

With this aim, the delamination problem of a laminate is treated by assuming that
only one delamination surface is present in the thickness of the composite plate. In this
case the analysis can be carried out by considering two superimposed anisotropic composite
plates connected by a special interface adhesive bond. The adopted plate model is intro-
duced. An interface constitutive law. based on the adhesion model proposed in Frémond
(1985, 1987, 1988). Point (1989) and Truong Dinh Tien (1990) for the study of a glued
surface, is presented. The state equations and the evolution law for the interface are carried
outin the formal framework of thermodynamics. Remarks are developed in the presentation
of the governing equations. Correlations between the present approach with the fracture
mechanics approach are emphasized. Then. a regularization of the model is presented. The
interface model proposed in Ascione and Bruno (1983) and Grimaldi and Reddy (1985) is
obtained as a special case of the proposed regularized model. Furthermore, the elastic-
damage interface model described in Ladevéze (1992) and Allix and Ladevéze (1992), and
generalized in Corigliano (1993) can be carried out in the framework of the proposed
regularized model.

Finite element formulation and a numerical iterative procedure based on the predictor—
corrector method are developed. Computational hints are given for a satisfactory numerical
determination of the stiffness matrix of the interface elements.

Finally. numerical results relative to simple structural problems are presented. Beams
and plates problems are treated. Analytical solutions carried out for the beam problem are
compared with those obtained by means of the finite element formulation. A real technical
plate problem is treated. It concerns the delamination induced in a cross-ply laminate
during the drilling.

2. THE PLATE MODEL

Let 17 be a composite laminated plate obtained by superimposing two plates V', and
V', with mid-planes ©, and Q. and constant thicknesses /1, and /.. respectively. The surfaces
in contact are denoted by S’ and S'*'. The common area of the two plates is denoted by
S. A perfect bond between the two plates is considered on S, = S and an initial defect of
adhesionis presenton Sy < S. A global cartesian coordinate system (x,, x,. x;) is introduced
in the mid-plane of the whole body . as shown in Fig. [. The unit vector n normal to the
surface Q defining the positive direction of the axis x; is introduced.
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The first-order shear deformation plate theory (Reddy, 1984), that is the Mindlin-
Reissner plate theory. 1s considered 1o model the behavior of each plate constituting the
whole body. Hence. the kinemutics 15 governed by the following displacement vectors:

U ) = Y Uy vy —d T e s 1), (1)

where superscript ' assumes vadue (1 or (2) and refers quantities to the plates V| or V.
The independent variable 7 represents an evolution parameter which can be identified, for
instance, with the time. The vectors v and @' represent the displacement of the mid-plane
and the rotation of the fibers normal to the mid-plane of the plates. The values d'" and d**’
are defined as the coordinates along the vi-axis of the mid-planes of the plates V', and V.
respectively.

The infinitesimal strain tensor D7 = D7~ (1. - 7)D'™ has components :

Dt]*]) — lAll“.)! D'p:, = U [3({: =0

2D = 2DV = g ke 2DV =+l (2a)
DVl =)y D=0 DU =02D70=0 207 =0 2D7I =0+ (2b)

At this stage, it is worth noting that the plates constituting the whole body are independent.
In fact constraints on the relative displacements have not been introduced so far.

From a constitutive point of view, each plate 1s considered to be composed by several
thin orthotropic laminae. with material axes arbitrarily oriented in the x,-x, plane. The
linear stress-strain relationship S = ([D] in a typical point of the laminate is considered.
where S is the symmetric Cauchy stress tensor and C is the fourth-order elasticity tensor.
The extensional. coupling and bending elastic tensors of each laminate constituting the
whole body. computed with respect to the coordinate system. are defined as:

AN = Cdv, B = | (v =d'"HCdy. D7 = | (vi—d")*Cdx;. (3)

W o o it

The elastic strain encrgy ot cach plate T s 1s given by the following symmetric bilinear form:

- -

([D‘ (l,lﬂ )],[)_‘(ug.,dl. _ ’ B |[’)w‘.(u‘*\)].ﬁﬂ](u(*l)dx

[ 8]

v i

b . . . PR PO
AT W ds = | DT D)) DO ds. (4)

Q - 0

A oty

The potential energy of the conservaune external load tor the plate Vi is given by the linear
form:

where p'” is the distributed load acting on the mid-planes of each plate V.

S THE ADHESION MODEL

Let P'""eS'" be a typical point of the plate ' defined by the in-plane coordinates
(x,.x:) and P''e S the corresponding point of the plate V5 with the same in-plane
coordinates (.v,.\»). The displacement vectors of the points P''" and P'? are:
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=)

i A1)

(X)) =¥ (-\'1~-\‘2)+%hl¢m(-’f1~-’(2) (6a)

B2 (x o) = V() — b (), (6b)

where the dependence on the time is understood. The relative displacement vector between
the two points under consideration is :

s = y,n+s =o' —a'", @)

where 5, represents the component of s in the n-direction and s' the tangential relative
displacement vector.

The interface law proposed herein to describe the behavior of the two plates in contact
by means of the surfaces $'" and §'%. is based on the model developed in Frémond (1985,
1987, 1988) and Point (1989). According to Frémond’s model the kinematical variable s,
that is the relative displacement vector introduced by eqn (4), is not sufficient to model the
contact with adhesion phenomenon. A new variable ; needs to be defined on the interface
S. It accounts for the intensity of adhesion. i.e. the proportion of active links between the
two typical points of the surfaces in contact of the plates. In other words, 7 represents the
damage variable and is set to assume the following values:

=10 whentotal adhesionis present,
0 <7 <1 whentheadhesionispartial,

=1 whenno adhesion exists. &)

Hence. the interface state is defined by means of the couple (s. 7). Note that the damage
variable introduced herein is not the same as that proposed by Frémond. In fact, his
variable named f is related to © by means of the simple relation: f = 1—y. The present
choice of the adhesion parameter is consistent with the possibility of understanding y as a
damage measure (Kachanov, 1986).

From a physical point of view a very simple behavior of the interface is desired. The
main idea consists in considering an on;off. i.e. glued/unglued, character of the interface,
which describes the fundamental feature of the adhesion. As a consequence, when adhesion
exists (0 < ; < 1) between the points P’ and P, the relative displacement vector is
constrained to be s = 0. On the contrary. if adhesion is not present (y = 1) then the normal
component s, of the relative displacement vector must satisfy the impenetrability condition
s, 2 0 and the tangential relative displacement vector remains free to assume any value and
direction in the interface plane. Hence. the displacement variable s is constrained to satisfy
the following conditions :

s =0 when thereis adhesion: 0 <7 <1,

s, 2 0 when there is no adhesion: 7 =1. )]

Finally. the displacement vector and the damage variable must satisfy the compatibility
conditions:

(1—)s=0 0<y<1 5,20. (10)

Introducing the sets K and Q as:
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K= (s.v): (I=18s=0 5,20 (1)
Q=7 01! (12)

the conditions (10) can be written in the equivalent forms:
(s.7) admissible < /i (s.7) + 1,(;) = 0. (13)

where /; and I, are the indicator functions of the non-convex set K and the convex set Q.
respectively. It is worth noting that although the set K is not convex, its indicator function
I is subdifferentiable. as pointed out in Frémond (1987).

4. STATE EQUATIONS AND EVOLUTION LAW

Once defined, the physics of the adhesion model. the state equations and the evolution
law are carried out in the formal framework of the thermodynamics, ensuring the con-
sistency of the model.

The couple (s, ) represents the set of the state variables for the ideal material present
at the interface S, between the two plates. The free energy density (s, y) for this very
special interface material is assumed to be:

wis. o) = 1(s.7). (14)

Thus, the thermodynamical forces (t%.Y) associated with the state variables (s,7) are
defined by :

thecap(s. ) = (s ) (15a)
Ye—Cups. ) = =0 L(s.y). (15b)

where the symbol ¢, indicates the subdifferential operator with the respect to the variable
(+). The thermodynamical forces t* and ¥ represent the dual quantities of the state variables.
Thus t* is a force per unit of area vector working for the relative displacement vector s,
hence it represents a reversible stress at the interface. The force Y works for the damage
parameter 7, then it is an energy of adhesion per unit area present at the interface.

The introduction of the free energy density (14) allows the determination of the state
eqns (15), but is not able to completely define the behavior of the interface model. A
complementary law is needed in order to determine the evolution behavior for the rate of
the state variables ($,7). From the thermodynamical point of view, it is fundamental that
the evolution law satisfies the Clausius-Duhem inequality, a direct consequence of the
second principle of the thermodynamics. In the present context, since variations of tem-
perature are not considered. the Clausius—Duhem relationship is simplified in the form:

d = s =5 ) = 0. (16)

where d is the so-called dissipation. t is the stress at the interface and the superscript point
indicates the derivative with respect to the time. or anv other evolution parameter. Because
of eqns (15). the relation (16) becomes :

d=(t-t")s-1 =t g+ 1720 (17)

The total interface stress vectors t = t* + ' is obtained as sum of a reversible part t*
obtained from eqn (15a). and an irreversible one t'®.

In order to satisfy the thermodynamical requirement expressed by eqn (17), the nor-
mality hypothesis is introduced. It consists in the assumption of the existence of a convex
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positive function called potential of dissipation A(8, 7), such that A(0,0) = 0, or equivalently
the existence of its Fenchel’s conjugate A*(t'®,Y), even convex and positive with
A*(0,0) = 0, governing the evolution behavior by means of the relations:

t'"® € 3,A (S, 7) (18a)
Yed.AGB,7) (18b)
or equivalently
$ed,“A*(t'"™. Y) (19a)
ey A*(t'R, Y). (19b)

It can be proved, in a general framework, that the existence of a potential of dissipation
and its conjugate with the relations (18) and (19) ensures the validity of (17).

A very simple interpretation of the delamination phenomenon suggests that once a
part of the interface is delaminated then it cannot be rebonded. On the other hand, it can
be supposed that, after any loading cycle starting from an unstressed condition and inducing
delamination, the stress at the interface returns to zero. This means that the interface
behaves elastically with respect to the stress or, in other words, the irreversible stress is
always zero. As a consequence, the irreversibility of the phenomenon depends only on the
variation of the delamination area and hence on the damage parameter. Furthermore, the
physics shows that the damage cannot decrease during any loading/unloading cycle.

Now, in order to define a mathematical model satisfying these simple features, a very
special form for the conjugate of the potential of dissipation is chosen. Let the quantity ¥
be introduced as:

Y(¢) = max {o, sup Y(1)], (20)

where w is the Dupré’s energy of adhesion, that is the energy per unit of area necessary to
separate two perfectly bonded surfaces. The convex set W(f) = (— oo, ¥(1)] is defined at
each time ¢ as the set of all the possible values for Y. The conjugate potential of dissipation
is assumed to be the indicator function of the convex set W(¢):

A*(tRY) = 1,(Y). @

where the time dependence is understood. It is worth noting that the chosen potential (21)
does not depend on the irreversible part of the interface stress vector t'*. As a consequence,
the Fenchel’s conjugate A** of A* does not depend on §. It is simple to verify that in the
present case the equality A** = A holds. Since A depends only on 7. no dissipation is
related to the rate of relative displacement vector §. Hence the irreversible part of the
contact stress vector is zero, i.e. t'® = 0, as desired. Thus, the reversible part of the stress
given by the formula (15a) represents the total stress at interface, that is t = t*, On the
other hand, as previously pointed out, any admissible adhesion energy Y, for the definition
of the quantity ¥, must be equal to or less than ¥. Thus, any admissible adhesion energy
satisfies the condition 7,(Y) = 0.

The normality rule (19), for the special form of the potential of dissipation (21),
assumes the expression :

yedlw(Y). 22)

Equation (22) represents the evolution law for the rate of the damage parameter. It can be
rewritten in explicit form as:
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S WY < ¥ (23a)
S0 iy =T (23b)

Finally, the evolution law obtained is equivalent to the complementarity conditions:
YT <0 (Y=T)i=0 >0 (24)

Once deftined the evolution law. it is necessary to check the consistency of the evolution
model with respect 1o the dissipation inequality (17). Since t'® = 0. eqn (17) is simplified in
the form:

d=1+ 20 (25)

Because of the Fenchel's relationship between conjugate functions A and A*. egns (18) and
(19) are equivalent to:

Y= A+ AR, (26)

Since both A and A* ure not negative. eqn (23) is satisfied and the Clausius—Duhem
inequality is ensured.

It should be emphasized that the damage parameter. according to the present formu-
lation, cannot decrease. This fact describes the mechanical delamination phenomenon well.
Thus. once delamination occurs. there is no possibility of rebonding of the two surfaces.
On the contrary. no limitations on the sign of the rate of damage parameter was introduced
into the original Frémond’s model. because his mode!l simulates the different phenomenon
of the adhesion of the two glued surfaces. as. for instance. the problem of the adhesive tape
which can be removed from a surface and then rebonded on the surface.

Note that the general formulation presented allows one to define several other state
and evolution laws. For instance. plastic or viscous behavior of the interface can be modeled
by assuming different forms for the governing functionals.

SOTHE GOVERNING EQUATIONS

Let -, be the initial value of the damage paramcter in a typical point of the surface S.
The range of admissibility for the damage parameter © is restricted to:

s s (27)
as a direct consequence of the evolution condition (23).

The governing equations are carried out using a variational formulation, as proposed
in Bottega (1983). In that paper neither the damage parameter was introduced, nor was an
evolution law specified. Thus. to have a physically consistent model and a justifiable
energy approach. a monotone delamination was assumed. On the contrary, because of
thermodynamical framework. in the present model the governing equations are derived
without any further assumption.

The total potential energy 7 of the whole svstem 1s given as:

fapl 1) gyt

TL'(ll u :J.S.r.:') — E(I‘H(U‘ »»u\!i) *l(!‘:'(ll‘ll.uill)'" /‘4l>(utl>)_f'|jy(u<_‘.)+
Losoods = | (1 =yods— | 7, chds+ | re[s—(@ —ua'")]ds, (28)
[ oS o ¢S
where /15 the indicator tunction ol the set 4 = ;. <t < 1. The vector ris the Lagrange

multiplier for the constramt (7). The functional (28) is equal to + « if (s, 7) does not belong
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to the set K or ;' does not belong to the set 4 on any subsets of S of positive measure. The
system is in equilibrium when the potential (28) reaches a stationary point. The state
equations are obtained by imposing:

(Ho

Oedlmu" . u??, s 1% +), 29)
where the symbol ¢ indicates the subdifferential operators. Let (du'”, du'®, ds, dr, dy) be
any admissible vanation of the variables in the total potential energy, the condition (29)

can be written in explicit form as:

Oecumu s 1" ")y =0 =" ou")y — /1 (ou) + f r'-on'" ds (30a)
JS
/‘ N
Oe(‘fu\:‘n(ull)1l.ul:]|)“s[).r17‘.’,()‘)<=>0 — a'“(u‘l’“.(&u‘z")ff":’(()‘u”‘)—J r() _O‘I—l(luds (30b)
N
Oeldmu™ u="s" 'Yy =0 = ’ (r' +t")- s ds (30c¢)
JN
Oc P,n(u” ’(].UCM’.SU ,l'“_",‘“) 0= [S” . (l—l(z)“) — i )l)) . 5]‘] ds (30(1)
JN
OECATTC(U(] '“.UG]U,SU.I‘“,‘,‘“) () = () — Y“+({U)5')’ dS, (303)
gy

where, at each point of the surface S. ¢" € ¢/,(;") and, according to eqns (15), ° € dJx(s’,
79 and — Y e (.1 (s". ;¥). Because of eqns (30¢) the mechanical meaning of the Lagrange
multiplier r becomes clear. It represents the opposite of the stress at the interface, hence it
is the force per unit of area applied on the plate ¥/, by means of the contact-adhesion with
the plate ;. On the other hand. it should be noted that the physical meaning of the quantity
¢" remains obscure. In fact, while it has a strong mathematical justification, its mechanical
sense 1s not evident. It can be interpreted as the reactive density energy which ensures that
the constraint 7', < 7 < 1 is not violated.

It 1s interesting now to compute the subgradients d/,(s, y) and ¢/,(y) at a typical point
P of the surface S. When at the point P the initial damage parameter is 3; < 1, the following
cases are possible:

v= = Ci(s.7) = Rx R Cli(s.y) = {0} &.1,(;) =R" (31a)
<< =y (s.7) = Rx R Cg(s.y) =10} &.1,(;) = {0} (31b)
v=1 $, > 0= (s.7) = (0 x {(0,0)] ¢ Ii(s.y) =R ¢.1,(;) =R" (31¢)

5, =08 #0=C0k(s,7) =R x{(0,0)} é.Ix(s,y) =R 0&.L,(y) =R* (31d)
5, =08 =0=CJ(s.) =R x{(0,0)] C.Ak(s,7) = {0} é.1,(y)=R*. (3le)

On the contrary. when 7, = | at the point P, only the cases with y = 1 are possible:

v=1 s, > 0=00k(s.7) = 0] x {(0,0)} édi(s.7) =R d.1,(3) =R (32a)
5, =08 #0=CJ(s.7) =R x ((0.0)} é&l(s,y))=R a&1,(;)=R (32b)
5, =08 =0=70k(s,7) =R x{(0,0)] Ik(s,y) =R é.1,(y) =R. (32¢)

The mechanical meaning of ¢/ (s. 7). subset of R, can be understood in the two possible
cases: either there is adhesion (7 < 1) and then the interface stress vector t = £,n+t' can



Delamination model tor laminated composites 491

have any direction (te R”). or there is not adhesion (; = 1) then the interface stress is due
only to the frictionless unilateral contact (7, < 0, t' = 0).

A very interesting consequence of the governing equation (30e) can be carried out. Let
eqn (30¢) be written in its local form :

w—Y"+4¢4" =0, (33)

When 3, < 1, by taking into account eqns (31). eqn (33} excludes the possibilities of solutions
of theformy, <y < lory = 1 withs = 0. Infact,if;, <5 < l.eqn (31b)imposes ¥ = ¢ =0
and then eqn (33) cannot be satisfied because w is a fixed positive quantity representing a
material property of the interface ; furthermore, if 7 = 1 with s = 0 eqn (31e) implies ¥ = 0
and ¢ = 0, and those values are incompatible values for the eqn (33). Hence, when the
initial value of the damage function at a typical point P of the interface S is 3, < 1, the
solution at this point for the adhesion problem s restricted to the cases:

A" = " S == 0
a ‘ ! 3
A<l=1T0 (34)
When y, = 1 admissible solutions are :
s=10
nEl=r=1 oy (35

In fact, eqns (32) make the solution (35) consistent with the local form of the governing
equation (33). From a mechanical point of view, when in a typical point of the interface
there is initially adhesion. it.e. ;, < 1. then after the application of the external load, the
solution can be adhesion without any variation of the damage parameter, or complete
delamination with full damage and non-zero relative displacement of the surfaces. On the
contrary, when the external load is applied in the typical point of the interface where initial
complete damage exists. i.e. 7, = 1, then the relative displacement solution may be different
or equal to zero. This behavior seems to be realistic. In fact. if initially there is adhesion
and a load is applied which tries to separate the two surfaces, then it can succeed or not;
hence, if it succeeds in separating, separation occurs and adhesion is lost (the damage is
complete). On the contrary if the load is not sufficient to separate the two surfaces, according
to the present model, the damage parameter does not change. It can be deduced that only
a brutal damage behavior is possible for the proposed model. like in elastic fracture
mechanics.

6. TOPOLOGICAL REMARKS

A very important mathematical point is the choice of the topology adopted to compute
the distance between two possible states (s”. ©') and (s”. ;”). such that it has a consistent
physical meaning. In the paper by Frémond (1987) the fundamental difference from a
mechanical point of view between the two situations characterized by " = l and " = 1 —e,
with 0 < ¢ « 1, on a finite area is emphasized. In fact. in the first case delamination occurs
while in the second it is excluded. Nevertheless. the distance between the two situations
according to the classical L norm can be as small as possible since ¢ — 0. As a consequence,
the L? topology is not able to account for the great mechanical difference between the two
situations. Hence, Frémond introduced a very special topology using a definition of distance
involving the difference of the sets in adhesion for the two states. In this section it is proved
that, because of the relations (34) and (35) between s and 7, the situation y” = [ —¢, with
0 < ¢ « 1, is excluded and hence the L* norm becomes satisfactory.

It can be supposed that at the beginning of any external load application, the damage
function on S assumes the value 7, = 0 on S, where there is adhesion, and 7, =1 on S,
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where there is the initial defect. Hence, at beginning of the load history, partial adhesion is
excluded. Then, eqns (34) assume the particular form:

=0 s=0
=1 s#0

:,' :0:>

(36)

As a consequence of eqns (36) the partial adhesion eventuality is impossible in every point
of S during any load history.

Let (s, 3') and (s”. ") be two possible solutions for the adhesion problem, i.e. (s', ¥)
and (s”, ") satisfy the compatibility conditions (36) at each point of the subset S, = S
where 3, = 0, and condition (35) at each point of the subset Sy = S where y; = 1. The
following subsets of S are introduced :

Si= iy )y (x.x) =1} (37a)
S, = {(xvox)(x, x,) = 0} (37b)

o= ) (L xn) =1 (37¢)
So= [y x2) 7" (x), xy) = 0}, (37d)

Obviously. S, = §,.S; = 83, S, = S, and S = S,. Let A denotes the distance between (s,
»’) and (s”, ") in the L*(S) norm. It means that:

A= (s’ =s" =" = s =s" ot 7= = L (s"—s")? dS+L (=) ds.
(38)
Four different regions can be distinguished in S':
S =808 S;=8.nS8, $;=8,n8, S;,=8,n8; (39)

The value of the distance A defined by means of eqn (38) can be computed as the sum of

the distances A, with 7 = 1. 2, 3, 4. evaluated on the four regions introduced by eqns (39).
Thus:

A=A +A+A+A,, (40)
where
on§, =1 7"=1 A, =J (s'—s")* ds (41a)
Sy
onS, =0 7"=0 §=0 s"=0 A,=0 (41b)
on$S, =1 7"=0 s"=0 Ay = () ds+u(Ssy) (41c)
S3
onS, ;'=0 ;"=1 s=0 s Ay = J (s") ds+u(Ss) (41d)
Sa

with p(S)) the measure of the subset S,. Note that in eqns (41) when the vectors s and s”
are not specified, it means that they can assume any value. As a consequence of the
relationships (39)—(41). the couples of functions (s, y) and (s”, y") are defined close to each
other in the L? norm, when:
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onS, A, = (s—s8) <@ (42a)
onS. A.=0 (42b)
onS: A.= 8 I +u(S) <Y (42¢)
onS, A,=|s" 7 +uS,) <O, (42d)

where 0 « 1. In particular. it can be deduced from eqns (42c.d) that two compatible state
functions are close in the L’ sense. only if :

WS < 0° (S <0 (43a)

or, equivalently :

WS, wSI—S. NSy <26, (43b)

In other words. the functions (s". 1) and (s". ") are close when S and S, do not differ
substantially from Sj and S, respectively.

Finally. the topology induced by the L norm appears to be satisfactory for the present
problem. In fact two situations are close in the L norm only if equation (43b) holds true,
which means that the sets S, and S are close in the Lebesgue measure sense. When S
and S} are regular sets, condition (43b) implies that they are close in the Hausdorff measure
sense or that the lines of delaminations separating the bonded and the unbonded parts for
the two considered cases, are close to each other (Chenais. 1976 Rodrigues, 1991). The
present conclusion is not in contradiction with that proposed in (Frémond, 1987), where
the L° induced topology appears unsatisfactory. since the Frémond’s model is not con-
strained to satisfy the conditions (36) or (35).

7. THE EQUIVALENCE WITH THE GRIFFITH CRITERION

A very interesting feature of the present model is the possibility to recover the fracture
mechanics approach (Maugis. 1987). The on/off character of the model allows one to
suppose a close connection with fracture mechanics. The aim of this section is to give a
mathematical proof that this supposition holds true.

To this end. let the solution state be decomposed as X'= {¢";°}, with
" = {u'" u"s" 1"} The state £ is a stationary point for the total potential energy n(Z)
defined by eqn (28). which can be rewritten in the equivalent form:

» ~

2E) = (. = E&)— | (1 -;{)wdx+. I, ds, (44)

oS JS

where E(X) represents the elastic energy of the two connected plates:

~ "

ES) =Y [;u‘”(u‘”.u“')—_f""‘(u“’)]+J l,((s.;')d.\‘+J refs— @ —a'")]ds. (45
=1

S N

Now, for a given damage function 7" the stationary condition for the total potential energy
(44) leads to a classical hinear elastic problem. In this case the solution state ¢’ = a(y")
satisfies only eqns (30a—d) and, moreover, it is unique. As a consequence, a one-to-one map
between " and ¢’ is defined. The total potential energy associated to the state (¢7,}’) is
reduced to:
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) = E(;“)— { (1 —j.”)(z)dS-}-J 1,(y)ds (46)
Js s
with
EGy =Y [a”w" () () —f (). @7

[

Note that the elastic energy is differentiable with respect to u'”. Thus, if u”(y) is differ-
entiable then the functional £ is also differentiable with respect to y. If £° is a stationary
point for = then ;° must be a stationary point for 7. Let &y be an admissible variation of
the damage function. obtained as the difference dy = 7" —7° where y” is a function close to
the function 7, in the sense of L as seen in the previous section. The function dy represents
an admissible variation for the computation of the directional derivative of the potential
7(y"). The stationary condition for the total potential energy # written in the form (46)
leads to:

»

0= | (w+g")d ds+0, E(po), (48)

JS

where 6(,;E‘(;.'(,) represents the variation of the functional E evaluated at 7°, along the
direction &;. By a simple comparison between eqn (30¢) and its equivalent form (48), it can
be deduced that:

”

_ )1’”0‘;' ds = (5(\’.‘5‘(’}'0)' (49)

VS

It may be remarked that. at each point of the interface ¢, oy < 0. In fact, when y = 0 then
¢ <0 and &y = 0, on the contrary when 7 = 1 then ¢ > 0 and &; < 0. Hence, because of
eqns (48) and (49), the following inequality holds:

"

J (o— Y3 ds = 0. (50)

Since ;" is supposed to be the damage function solution of the delamination problem,
it belongs to the set of admissible damage functions satisfying conditions (35) or (36).
Hence the function ;" assumes the values 0 or 1 on S. The support of the function 7° is
denoted by S,u. and it represents the actual delaminated area. The function " is chosen
such that it satisfies the conditions (35) or (36). The support of the function y’ is denoted
by Sg. Then. the set 65 = (Sg0 U S, ) —(S4o ™ Sy) is the support of the function éy. The
variation Jy can assume values 1 or — 1 on 4S5, and 0 outside.

In order to compare — Y with the notion of energy release rate of fracture mechanics,
two very special types of variations o7 are considered : it is assumed on 0S, that dy takes
either positive or negative values on its support. This can be obtained by setling Sy o Sgo
or Sgo © S, . Firstly, the case S; > S, is considered. Note that the local value of the energy
Y'(P) depends on the position of the point PeS. In fact three cases can occur; (i) If P
belongs to the interior of S,o. then the delaminated area cannot grow around the point P;
(i1) If P is in the exterior of Sye, then let Sy = Syo+ #(P), where #(P) is a neighborhood
of the point P; (i) If, finally. P belongs to the boundary of Sy, then let
Sy = Sgv v £(P). In the last two cases the local value of the energy of adhesion computed
at the typical point P is given by :
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1 - |
}'”(P) _ li J.,- S : Y ds R 51
,ylt}’?]- P L“(Sd - ‘S‘t“ ) S \f ( )

with 08, = S; — 5. Since the correspondence between the damage function 5 and its
support Sy is bijective. the elastic energy of the laminate can be thought directly as a
function of support of ;. i.e. with abuse of notation £(;') = £(S,). As a consequence,
because of eqn (51), it follows:

—YiP) = lim i R [E(S))— Ff(s,)]L _ 4ESy) _
Firvor !J“(Sd =S ' o ‘ de P

(52)

Analogously. for the case S; < S,o. three cases are possible. depending on the position of
P. In fact, if P belongs to the interior of Sy, then S, = Sgv— #(P). if P belongs to the
boundary of Sgo. then S, = Sy~ (S~ #(P)). if. finally. P is outside Syn. In the first two
cases eqn (52) is always obtained, where now iu(S, —Sy,) < 0. Finally, the energy of
adhesion can be regarded as the derivative of the elastic energy of the structure with respect
to the variation of the surface of delamination. which is generally named in fracture
mechanics as the energy release rate.

At this stage the meaning of inequality (50) appears clear. In fact, 1t can be deduced
that :

] dE(S,)
P¢S 2 — is 0 (53a)
ds, ,
dE(S, )
Peint(S,) 2 — d(S‘J ); = (53b)
=2 g
dE(S,
Pecsy 2~ U, (53¢)
Sy |

r

where int (S,0) denotes the interior of the set S;.. Here the close connection with fracture
mechanics theory clearly appears. When point P belongs to the delaminated area then the
energy of adhesion Y* is greater than the Dupré’s energy. When point P is in the adherent
area then Y is less than w. and when point P is on the boundary of the delaminated area
then Y° is equal to . Hence, the Dupré's energy is the Griffith limit energy release rate,
and as a consequence can be evaluated by using standard experimental tests of fracture
mechanics. If the crack zone is stable, according to the Griffith theory, the energy release
rate is less than the limit energy release rate. On the contrary. if the energy release rate is
greater than the limit energy release rate then the delaminated area grows (Destuynder.
1991).

¥ THE REGULARIZED MODEL

The nondifferentiability of the tfunctional = detined by eqn (28). and governing the
delamination problem. could represent a problematic mathematical difficulty, both from a
theoretical and computational point of view. The nondifferentiability of the total potential
energy is due to the presence in the functional of the indicator functions I and /. In order
to transform the nonsmooth problem into a new one governed by a differentiable functional,
the regularization technique can be used. It consists in replacing in the original governing
functional 7 the nondifferentiable terms with new differentiable ones. characterized by the
fundamental property that they must tend to the original irregular funtionals when some
parameters, called penalty or regularization parameters. approach to zero.
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Several different regularizations can be chosen. Among all the possible regularizations,
it is suitable to select the ones which have evident mechanical interpretations. In what
follows. a very simple regularization is considered.

First regularization
The function Iy is regularized by considering the following differentiable function :

, , 1 ,
o= =000 + 05, )]+ = (1 =) s, |15, (54)
2y, 20,

where ()" and (+) indicate the positive and negative parts of (- ), respectively, such that
(*)=()"—=(*) .and !} denotes the norm of a vector. The scalars y, > 0 and n, > 0 are
penalty parameters. It can be seen that for », —» 0 and », — 0 the function [y — I from the
exterior. i.e. /[ represents an exterior regularization of the perfect penalty function fy.

Since the free energy density for the interface material is assumed to be equal to the
indicator function of the set K (14). the regularization of I induces the regularization of
the free energy density of the interface. Thus, eqns (15) defining the thermodynamical
forces, i.e. the stress vector at interface and the energy of adhesion, assume the regularized
form:

] 1
t= [t -8 =8, In+(1=7) }f]fs, (55a)

S (55b)

2. 2,

According to the regularized equation (55a). the interface material is modeled by a uniform
distribution of nonlinear elastic springs oriented in the normal and tangential directions to
the surface S. The stiffness of the springs depends on the damage state. In the tangential
direction the stiffness of the springs is (1 —7).#,. The springs in the normal direction have a
nonlinear behavior that can be considered as bimodular. In fact, the stiffness in normal
direction is (1 —7)/n, in traction and 1 5, in compression.

By replacing the function /, with its regularized form /' into the functional n the new
regularized total potential energy 7' is obtained. The stationary condition for the functional
7" leads to a first regularized form of eqns (30a—30¢e). The regularized equations are formally
identical to the original ones. and define the solution £' = {¢". 7'}, with ¢" = {u'"", u?", &',
r'}. For the regularized problem. the interface stress vector and the interface energy of
adhesion present in eqns (30) are given now by the formulae (55). The local form of the
regularized eqn (30e) is:

| . |
0=y (5, )+ 5 s ':I—H/r(;"). (56)
._)]‘

2.

It may be remarked that eqn (56). contrarily to eqn (33) obtained following the original
nonsmooth approach. makes the partial damage case 0 < v < 1 possible. In fact, when
o = Y then ¢ = 0. The condition 0e ¢/7,(;) can be satisfied for any admissible value of the
damage parameter, i.¢. for 0 < 7 < 1. As a consequence, when w = Y eqns (30e) and (55b)
are not able to uniquely define the value of the damage parameter. In fact. in the typical
point of the interface where the initial value of the damage parameter is zero, after the
application of the external load. when the adhesion energy reaches the Dupré’s energy, the
present regularized delamination model imposes :

<<l =0 (57)

i

Hence. it is possible to determine neither the value of the partial damage nor the rate of the
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damage. In order to eliminate such ambiguity. a tfurther hypothesis should be introduced
in the model. It may be supposed that when the Dupré’s energy limit is reached for the
adhesion energy. total damage is obtained. Thus. partial damage is excluded and a brutal
damage behavior is considered as occurs for the nonsmooth case:

=0 whenY' <

=1 when Y=o (58)
[t is very interesting (o note that the quantity }' obtained in eqn (55b) by simple differ-
entiation. with respect to the damage parameter. of the function /' represents the reg-
ularization of the local energy release rate of fracture mechanics. In fact, let ¢ = {u'"", u?”,
s, 1’} = a'(;") be the solution of the regularized form of eqns (30a- 30d) for a fixed damage
state 7" The regularized form of the clastic energy of the laminate (45). associated with the
damage state ;. is given by :

») = lu“'(u“"'.u Pyl e st ) — ) + T(s ). (59)

It can be proved that ¥ can be obtained by derivation of the elastic energy, with respect
to a variation of the adhesion surface. In fact. by substituting eqn (30c¢) into (30a,b), by
making the sum of the obtained equations. and by taking into account the condition (30d),
for the state ¢’

i

! oout Y b e ou =Gty oty + |t edsds = 0. (60)
Js
holds true. Now. by taking into account the relation (334). by setting ou'"’ = u'””, éu'® = u?”
and ds = s", and recalling that
[l -y, S R e R RS (61)

eqn (60) becomes:

a(ll(ull»'.u(!>’)+“111(u:2» _ll“. ) f'“(ll‘ ' ~.7,--‘ (u Ty )

&

o .
T, 0= S{II‘}dS =0. (62)

A comparison of the definttion formulae (39) and (54) with the deduced eqn (62) allows
one to write:

O R A R S TR AR IR (0 ) (63)

Of course. eqn (60} is satisfied (or both states ¢' and o Then. consider the variation é¢ = ¢°
when eqn (60) holds for the state 4. and the variation 56 = ¢” when eqn (60) holds for the
state ¢'. In these cases. egn (60) becomes. respectively

FOM) W) = d e a d )

C |
‘|~i (o ] 4+ (L—)sis s (64)
1, 1y
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.!'(lb(u\ly»)+}'12)(u\2y») :a(l'(uu)r_uli)/)*_“12)(“(2);‘.“‘3;')

e |
\5 [(F=3")s0" =, ]S;+’?(1“/r)SI'SE}dS- (65)

+ -
RS {”n

The difference between the damage function 7 and the damage function ;', solution of
the regularized delamination problem, represents an admissible variation for the damage
function oy = 7" —+", useful for the computation of the derivative of the elastic energy with
respect to the change of adhesion surface. The damage function ;" is chosen such that
dr =+ —="assumes values of +1 or - 1 on 4S,. In the following the classical notations are
used and the case of point P belonging to the boundary of the delamination area is
considered. As a consequence. because of eqns (63)—(65) the difference between the elastic

energies of the laminate computed for the states ¢” and ¢' can be written in the form:

- S | {
E'(;Y—E'(")y= — s snd so o ds+ resids
) ] (JSI:UH Ly ds |2 o8 ds ng,z’h S| s
R L
— . Soscsids+ | (s s — 8 s) ds), (66)
l,\:‘Jl Js <n

where the classical notations are used for the definition of the subsets of S and the symmetry
of the bilinear forms «'" and -’ is taken into account. In what follows, it is assumed that
the state ¢” depends continuously on ;. thus if ;" tends to ;" then s' tends to s". Finally, the
derivative of the elastic energy with respect to a variation of adhesion surface is given by :

dEC"), .
R — ) e ,l,,, E(
de P SRyt l,Ll(Sd = -S‘i])

! I IR i
- lim ) . [ N ( sitsnds— | satsy dxﬂ}
jll’i . P '\,u(S“ 75“;) BN NES Js,

o o \
. [1 ( s;-s;ds—f s{s*{dsﬂ}
IS = SO LA, o

I .
~ lim ! | (s, .\'f,»—SL..\',',)dS}. (67)

SRR e eny
‘/l(;SJ ‘S«I) *]n N

I
A‘
s
|
tr,
-
——

{l

It can be proved that the last limit in eqn (67) is zero. The mathematical proof is not
straightforward and for sake of simplicity is not reported herein. A simple justification of
this result can be obtained assuming that s” tends to s in the Lipschitzian manner with
respect to the diameter p of the neighborhood #(P) of a point Pe S:

S —8

<¢p ceR™. (68)

In fact, the quantity in the last integral of eqn (67) is different from zero only when the
product 5,5, < 0. and in this case the following chain of inequalities holds:

e s = S ansh ] < (s —sn)7. (69)

where | - | indicates the absolute value ot a number. By taking into account the hypothesis
(68) and recalling that u(S;— SY) = u( 7 (P)). the relation (69) implies :
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1 Co (cp) -

: Vsl =8 wilds < s (). (70)
w(Si—-SH ls | I /(P))'L

where & is the subset of S in which v.s, < 0. Then., since the neighborhood of P varies as
the square of its diameter when it tends to 0. it holds that:

. (('/))1
lim -~

PR -
gl g Py T s (

Furthermore, the measure of the subset ¥ where 5.y, < 0 tends to zero when s tends to s.
then:

lim  w(Y) = 0. (72)

(BN

Equations (71) and (72) allow one to deduce that the first term of the inequality (70) goes
to zero when ¢ (P) tends to P. and hence the last limit in eqn (67) is zero.

According to the value of the variation o; on dS,. it may occur that §, < S} or
S < S,. In fact, when ¢ = | then S, = S, and thus S, = S, U _¢. on the contrary. when
oy = —1then S, = S and thus S, = S, #. In both cases eqn (67) can be written in the
equivalent form:

de P g AP~ I’ﬂ(s‘:l - 5“(; 72”1\ N =

ISy o

| 17 I
= — lim - { sy sy ds+ S, 'S{dx]
) .

1 ol .
[2””(sn ) +2’71 st | } (73)

By a direct comparison between the obtained explicit tormula of the derivative of the elastic
energy (73) with the formula (55b), it can be deduced that even for the regularized problem.
the energy of adhesion per unit area can be regarded as the energy release rate:

, dE"(;")!
Y= s 74
L ds, (74

Second regularization

A further simplification of the delamination problem can be obtained by a reg-
ularization of the function 7,. To this end. consider the differentiable function ', defined
as:

I'e) = —a([1=21+Injl —|1=27). (75)

It represents an internal regularization ot the nonsmooth function 7, for y€]0,1[. The scalar
¢ > 0 is the penalty parameter. In fact. in the limit as & — 0 the function %, — I, from the
interior.

As a consequence of the further regularization. a new regularized total potential energy
n® is introduced by changing. in the functional =*. 7, with /',. The stationary condition for
n® leads to eqns (30a- 30e). where in eqn (30e) the quantity ¢ is now the derivative of /',
with respect to 5,
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Fig. 2. Graph of the function ;(Y).

2|

([‘(‘/'):Ell_-"l_é"/"“. (76)
The function ¢'(y) is not defined for ; = 1 and ;' = 0. It is easy to verify that:
lim ¢'(;) = —x  lm ¢'(;) = +oC. an
0 -

When the regularization parameter @ tends to 0. the graph of the function ¢'(y) tends to the
graph of the subdifferential ¢/,.

It should emphasized that the tunction ¢'(;) is bijective from 10, 1[ to R. As a conse-
quence, the restriction of the function ¢'(y) to 7€]0. 1] is invertible. Hence, taking into
account eqn (76), eqn (56) can be inverted and then used to define the damage parameter
corresponding to a certain relative displacement s. as:

i J ]( ‘\+ ] ) 2 ] 71 +)2+L‘S‘2
¢ [“ 21, 5 ) 2, > (+ “ 21, (5o 2y,

. e T (78)

! | N 1 s
2(;‘,+ m— [7” (s,) + '7"”' [s,! ']D

under the condition 7€]0, 1[. The plot of the damage function (YY), as function of the
adhesion energy. obtained by combining eqn (78) with eqn (55b), is given in Fig. 2 for
several values of the regularization parameter ¢. when w = 0.15.

Now, let X' be the solution of the full regularized delamination problem governed by
eqns (30a-30d). (55) and (78). When the regularization parameters ¢, 1, and #, tend to 0
the sequence of solutions {X'} is expected to tend to the £” solution of the original problem
(30). The convergence of the solution of the regularized problem to the solution of the
nonsmooth one is treated in Point and Sacco (1995a).

It should be emphasized that the second regularization proposed leads to the simplest
model which can account for a gradual damage behavior of the interface. In fact, the
original non-smooth delamination approach described in Section 4 can generate many
other regularized interface models just by choosing different expressions for Iy and I,. Of
course more complex models can be defined when 7% and /', depend on several parameters
which are to be set to fit with experimental results.

9. THE NUMERICAL PROCEDURE

In order to obtain a problem with a lower number of explicit unknowns, equations
(30a-30d) and (55) governing the regularized problem of the delamination are reduced to:
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Sl
0:a”’(u“"'.()'u"’)-_f""(<5u'“)"l ’i
I ']n

.

]
Hlvrwf.'\w]n+(lrﬁﬁ}'éﬁ”(h (79a)
un

e |
‘ [(1—-")s =& Jn+ ,']' (1 4‘,:")5{}'51’1‘3’ ds, (79b)

0= a(fi(ull)r‘(5u(3))#/'vlw(()‘u13!) +
LN “’n

o

where s* = 6" — """ is implicitly accounted. Of course the problem is completed by means
of eqn (78). In this manner. only the displacement and the damage fields appear in the
governing equations.

The numerical procedure developed in the following is based on the finite element
formulation. The structure is partitioned into finite elements. The discretization is realized
for the plate Q,. for the plate Q, and for the interface S. Thus, two different types of
elements are obtained : the plate and the interface elements. The displacement parameters
are expressed by the following relations :

um- — E ull“w\_P, (/,)“‘ - S w‘*“q}‘_ (80)

with # number of nodes of the mesh and W' Lagrangian interpolation functions. By
substituting the formulae (80) into e¢qns (79) the following algebraic problem is reached :

Fl

2] (81)

KU -U ;) WL+KVL'—t\ﬁT

[KQ_FK,\lL-J_le../) _Ks(l‘_‘ _L-I.T) ]“JI-
v

where U’ collects the displacement parameters of the plate Q. F, is the vector of the nodal
forces acting on the plate Q. K is the stiffness matrix of the plate Q.. and KS(U*=U", ;) is
the secant stiffness matrix of the interface. Equation (81) can be written in the simpler
form:

R(U.) = K(U.o)U - F = 0. (82)

where U = [US.U".F = [F.F" and K(U.") is the sccant stiffness matrix of the laminate.
Equation (82) defines the equilibium condition at the generic instant #. In order to determine
the displacement and damage evolution for the structure subjected to a certain load path,
a numerical time integration is needed. Because of the softening interface constitutive law,
a kinematically driven integration is recommended. Thus. let U and y be the displacement
vector and the damage parameter at the time 7 = 7,. The numerical integration algorithm
adopted belongs to the so-called predictor-corrector family and, at the (i)-th iteration for
the [rn+ 1]-th time step, consists of the following steps:

(i) define the tangent stiffness matrix K, (UY "0 1y = (0 AU KUY Y 1)) (83a)
(ii) compute the unbalanced torce vector G = F — (KU, ool pyla+!) (83b)
(iii) solve the linear problem AU " = [K(U" - ~#- ') 'G (83¢)
(iv) update the displacement vector Ul = U¥"" AUV (83d)

(v) determine the new damage function -~ " by means of the formula (78).

(vi) go to the step (1) until the norm of the unbalanced force vector ||G) is less than a
prefixed tolerance.

Note that at beginning of cach time step increment it is taken Ulsr 'l = UM thus the first
iteration of the [n+ 1]-th time step represents the elastic predictor, the second iteration can
be regarded as the check of the consistency and then there is the damage corrector.
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One of the major computational problems consists in a satisfactory determination of
the stiffness matrix for the interface elements. In fact, the function to integrate in each finite
element obtained as discretization of the interface S could be irregular enough, such that
the classical Gauss integration can fail. This is due to the fact that each element can have
a part in adhesion and another delaminated. This difficulty, occuring in many unilateral
problems is generally solved by using a very fine mesh, in order to have in each element full
adhesion or full delamination. This approach is not very effective. In fact, in this way the
number of unknowns of the problem increases. In a recent paper (Barbero ef al., 1993) the
Simpson’s numerical integration method with a large number of integration points has
been proposed to overcome this difficulty. The method appears very simple in the implemen-
tation and accurate in the determination of the stiffness of the interface elements even when
a fine mesh is not adopted. Two integrations are then implemented for the interface
elements : the Gauss and the Simpson routines. The first is used when the adhesion is total
on the element, the second when the adhesion is partial on the element. When the element
is completely delaminated the interface subroutine is skipped for that element.

10. NUMERICAL RESULTS

The non-smooth and the regularized models are adopted for the computations. The
non-smooth model may be convenient for the analysis of the delamination of beams, since
it allows us to obtain analytic solutions at least in simple cases. On the contrary, regularized
models can be simply implemented in standard finite element codes, which allows one to
approach more complex problems. e.g. delamination of plates. Furthermore, they allow
the consideration of a finite deformability of the interface.

Hence, numerical results are carried out for beams using both the proposed finite
element procedure with the regularized models, and the analytical approach developed in
Point and Sacco (1995b) with the non-smooth and the first regularized models. Com-
putations are carried out by neglecting the shear deformation in the thickness according to
the Euler beam theory. Then, a plate problem is solved via the finite element method
adopting the first regularized interface model.

The beam problem

Initially the problem of two beams in adhesion with each other is considered (Fig. 3).
The two beams are supposed to be geometrically equal and realized with the same material.
In what follows. E denotes the Young’s modulus, b x 4 the dimensions of the cross-section
of the beams, L the total length of the beams and L, the length of the initial defect. The
following data are considered for the computations: £ = 130 GPa, 4 = 200 mm, & = 20
mm, L = 1000 mm, L, = 20 mm. Both beams are clamped for z = 0 and beam 2 is subjected
to the imposed transversal displacement d = 10 mm for z = L. In this first application
delamination growth is not investigated, i.¢. a linear problem is treated.

Analytical results are obtained using the brutal damage behavior for the first reg-
ularized model. Hence the problem is reduced to the analysis of two beams partially in
contact with each other by means of vertical and horizontal distributed elastic springs with
limited strength. Let & denote the stiffness of the vertical springs and ¢ the stiffness of the
horizontal springs. Note that k and ¢ represent the penalty parameter b/y, and b/n,

Fig. 3. Two beams partially connected by means of horizontal and vertical distributed springs.
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Table 1. Analvtical solution for the double cantiler beam problem

k (GPa) Ar tmm) Aw (tmm) F kN v
(Nmm mm ')
1.00e-3 219503 2.65166e-1 0.92242 2.42864
1.00e-2 4.61477¢-1 2.89929¢- 1 1.03621 1.27495
1.00e-1 1.04769¢-1 2.73091¢-1 1.24683 2.44070
1.00 2830672 1.62347¢-1 2 34380 7.33050
1.00e1 1273872 3.30997e2 375587 3.55036
1.00e2 209028¢-3 4.79295¢-3 4.11050 1.05180
1.00e3 7.50673¢-4 8.5808 -4 415417 0.46583
1.00c4 1 YS473¢-4 2042174 4.15900 0.29531
1.00e3 34320 1e-3 S.78428¢-3 4.15959 0.23118
1.00e6 153844 1e-3 1.76174¢-3 4.15970 0.20311
1.00¢7 47732046 3.30369¢-0 113974 0.18964
FM solution 01,0000 0.00000) 415976 0.17470
b . .
initial delaminated area

l Ll

l' L, Tl-z

I T

L
iy 4 Fanne element discretization

respectively. Several values tor the sutfness of the vertical and horizontal springs are
considered, with ¢ = & 2.

The relative transversal and longitudinal displacements Ar and Aw for z = L. the
reaction F of the support where the displacement o is imposed. and the adhesion energy
per unit of length 1 = Yh evaluated for - = L. obtained for several values of the stiffness
k, are given in Table I. where the “FM solution™ represents the solution carried out
adopting the non-smooth interfuce model, and which is in fact the fracture mechanics
solution. It should be emphasized that the solutions carried out by means of the first
regularized model converge toward the solution of the non-smooth problem and hence to
the fracture mechanics solution. when the stifiness of the distributed springs tends to
infinity. Then the problem is approached via finite clement method. In the computations
the second regularized model is adopted. with j = 6 = 10 * Nmm mm~". The mesh used
for the computation is presented in Fig. 4. [t consists of 14+ 14 beam elements with
13 special interface elements. For both the beam and the interface elements quadratic
interpolation functions are used. Results are given in Table 2. The very good agreement
between the analytical and the FEM results may be noted. by comparing Tables 1 and 2.

Next the nonlinear problem of the delamination is considered. To this end, the pre-
liminary computation of the release energy rate via fracture mechanics has been developed
for several values of the length L,. and for several values of the transversal imposed
displacement J. The results obtained are plotted in Fig. 5. Several behaviors are possible,
depending on the initial delaminauion defect and the Dupré’s energy. In particular. for
0 = 1 mm, when a value of the Dupré’s energy per unit of length less than & = wh = 0.068
Nmm mm ™' is considered. complete scparation of the two beams occurs if the length of

[able 2. Finite clement solutton tor the double cantiler beam problem

Kk iGPa) Arimm) Aw (mm} F kN (Nmm mm ")

1.00e2 2 10000e-3 4.81000¢-3 411060 1.05890
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Fig. 6. Fite element mesh used to compute the delamination.

the initial defect is greater than 130 mm. as can be qualitatively deduced from Fig. 5. On
the contrary, if the initial defect is smaller than 130 mm. delamination does not occur.

In order to investigate the delamination growth as a function of the imposed transversal
displacement, the Dupré’s energy per unit of length is taken @ = 0.3 Nmm mm ™', and the
big initial defect L, = 465 mm is considered. Results are obtained by using the analytical
and the finite element approaches. with the first and the second regularized model,
respectively. The parameters chosen for the application are: k = 100 GPa, ¢ = k/2 and
Jj=1¢&b=10"* Nmm mm ~'. The mesh used for the FEM computations is presented in Fig.
6. The smallest elements are present close 10 the crack tip and in its neighborhood where
delamination develops. The delamination length L. and the reaction F of the constraint,
where the imposed transversal displacement is assumed. vs. the value of ¢ are plotted in
Figs 7 and 8, respectively. These figures show the efficiency of the FEM developed for the
determination of both the length of delamination and the displacement—force relationship.

800
analytical solution q
. FEM soution

700 -

L, 600

(mm)
500
400 T T T T v
0,75 1,00 1,25 1,50

o (mm)

Fig. 7. Delanmination length vs. unposed displacement.
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In fact. a very good agreement of the results obtained by means the analytical and the FEM
approaches can be seen. In Figs 9 and 10 the transverse displacements ¢ of the beams are
plotted as a function of the coordinate -. for the cases d == 1 and 1.5 mm.

Finally. the effect of the regularization parameter j = ¢h is investigated. Solutions are
carried out via FEM for several values of «. with the transversal imposed displacement
¢ = 1 mm. In Fig. 11 the plot of the damage tunction ; vs. the z-axis. in the neighbourhood
of the delamination line. 1s given. The diffusion of the damage for high values of the
parameter ¢ and the convergence of the model to the brutal dumage behavior when ¢ — 0
should be noted.

The plate problem
The delamination problem of & composite laminate is treated. The analysis refers to a
simply supported square plate with side ¢ = 500 mm and thickness # = 60 mm. The plate

0.9 1

v J
(mm) 0.6
0.3 1

0.0 v T T | T T T T
0 200 400 600 800 1000
Z (mm)

Freo 100 Pransversal displicements v 2o = L3 mm.
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Fig. 11. Damage function vs. =. for several values of the internal regularization parameter.

lamina 1 (90°) 14
lamina 2 (0°) -

lamina 3 (90°) V

2

X

Y

Fig. 12. A quarter of a cross-ply laminate with a hole in the first two laminae.

consists of three orthotropic laminae of “*Fiberite T300/9762", which is a graphite-epoxy
composite characterized by the following material properties (expressed in GPa) : £y = 130,
Er =965.G, =G ;= 56.Gp = 4.8, ¢ = 0.29. In the center of the cross-ply (90°/0°/90°)
laminate a circular hole with radius p = 30 mm is present only in the first two laminae of
the plate. The continuity of the third lamina is warranted as shown in (Fig. 12), where only
a quarter of the plate is represented. The Dupré’s energy is taken © = 0.15 Nmm mm 2.
The first regularization parameters are: 1, = 50 GPa mm and n, = 2n,. The central point
of the third lamina is subjected to a transversal imposed displacement ¢. The delamination
is supposed to develop between the second and the third lamina. Thus, the plate ¥, is
composed of the first two laminae and ¥, of the third one. Because of the double symmetry
of the structure only a quarter of the laminate is considered for the analysis. Hence, Q, and
Q, are discretized in 24 and 25 plate elements. respectively, and S is discretized in 24 special
interface elements.

Computations are developed for several values of the imposed transversal displacement
d. In Fig. 13 the separation lines between the parts of the interface S in adhesion and in
delamination are presented. It should be noted that the delamination increases along the
direction of the major stiffness of the third layer. As a consequence, the delaminated area
does not have a circular shape. In Fig. 14 the plot of the damage function obtained when
6 = 1.3 mm is presented. In this figure the function | —7 is plotted and a brutal damage
behavior is obtained. This is essentially due to the very low value of the internal reg-
ularization parameter considered: & = 10 * Nmm mm "

The transversal displacements of the two plates constituting the laminate computed
along the axes x, and x. are plotted in Figs 15 and 16, respectively. The orthotropy has a
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Fig. 14 Damage function at the intertace for o = 1.3 mm.
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Fig. 15 Deformation of the laminate along the v -direction.
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Fig. 16. Deformation ot the laminate along the x,-direction.

very strong influence in the shape of the delaminated area. Along the x,-axis the two plates
are completely independent and the delamination is large. On the contrary, along the x,-
axis the plates constituting the laminate are largely bonded.

11. CONCLUS]JONS

A consistent constitutive law for the interface material, able to handle the delamination
phenomenon, has been obtained starting from the Frémond’s adhesion model. The pro-
posed delamination model has been developed in the formal framework of thermodynamics.
[t is based on the very simple physical idea of the behavior of the interface. In fact, it has
been assumed that when two points on the surfaces in contact are in adhesion, their relative
displacement must be zero. In such a way, a non-smooth behavior of the interface has been
obtained. Physical intuition allows one to suppose a close connection of the present model
with fracture mechanics theory. The main feature of the presented delamination approach
consists in the possibility of mathematically recovering fracture mechanics theory and,
furthermore, to generate various regularized models with different mechanical meaning. A
numerical procedure has been presented and used for beam and plate problems. Concerning
the solution of the beam problem. the resuits obtained using the finite element method have
shown a very good agreement with the analytical solution even when a fine mesh has been
adopted. The problem of the numerical integration for the determination of the interface
stiffness matrix has been discussed. The Simpson’s integration rule with large number of
integration points has been used. Numerical results related to the interesting technical
problem of the delamination occurring during the drilling of a composite laminate has been
presented. They have shown the delamination growth and the decrease of stiffness of the
structure.

Although some comparison with experimental results appear necessary to validate the
proposed approach. they are not presented herein. because the first aim of this research has
been the presentation of a comprehensive approach to the modelization of the delamination
phenomenon and the implementation of a robust numerical procedure. At this stage, it can
be concluded that the present approach appears general enough and consistent with the
thermodynamics. Furthermore, the particular regularized models and the numerical pro-
cedure proposed are simple and effective for the analysis of the delamination of composite
laminates.
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